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FREQUENCY DEPENDENCES OF COMPLEX
MODULI AND COMPLEX POISSON’S RATIO

OF REAL SOLID MATERIALS
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The concept of a complex modulus of elasticity is a powerful and widely used tool for
characterizing the linear dynamic elastic and damping properties of solid materials in the
frequency domain. It is shown in this paper that typical characters of frequency
dependences of all complex moduli (shear, Young’s etc.), and complex Poisson’s ratios of
real solid materials can be determined by transforming the causal and real relaxation and
creep responses, respectively, from the time-domain into the frequency domain, even
without having to specify the processes of relaxation and creep. It is proved that all dynamic
moduli monotonically increase, and the dynamic Poisson’s ratio monotonically decreases
with increasing frequency, and all respective loss factors pass through at least one
maximum. These frequency dependences are generally valid for any real solid material
regardless of the actual damping mechanism. Some experimental results are presented and
interepreted in the light of the theory. The usefulness of theoretical predictions in materials
engineering, measurements of dynamic properties and in modelling dynamic behaviour is
discussed.
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1. INTRODUCTION

All real solid materials possess both elastic and damping properties; damping is the ability
to dissipate some mechanical energy during vibration or dynamic deformation of any kind.
Both the dynamic elastic and damping properties, briefly referred to as dynamic properties,
of real solid materials are frequency dependent to a greater or lesser extent. The complex
modulus concept is a powerful, widely used tool for characterizing the dynamic elastic and
damping properties in the frequency domain. According to this concept, all elastic moduli
(shear, Young’s etc.), as well as the Poisson’s ratio of any real solid material, whether
isotropic or anisotropic, can be regarded as a complex quantity [1]. A knowledge of the
complex moduli, and more particularly their components; the dynamic modulus, the loss
modulus and the loss factor, and their frequency dependence have been of interest to
scientists and engineers for a long time. Acousticians need such data to predict wave
propagation, applying a material properly for vibration control, and taking the dynamic
properties into account when calculating vibrational response. Furthermore, such
information is absolutely necessary to materials engineers when developing and qualifying
new materials for vibration and noise control.

The dynamic properties are determined by measurement. Most available experimental
data, covering wide frequency ranges, concerns organic polymeric materials usually
referred to as viscoelastic ones [1–3]. The experimental data invariably shows that dynamic
moduli of polymers increase with increasing frequency, and loss moduli and loss factors
pass through at least one maximum [1–4]. The frequency dependence is most significant
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when the loss factor is high, as is characteristic for rubbers and rubber-like materials in
shear and uniaxial tension–compression deformation. In contrast to organic polymers the
dynamic properties of stiff structural materials, such as metals and wood, are usually
considered to be independent of frequency on the basis of measurements performed in the
audio frequency range [5]. In comparison with the data available concerning complex
moduli, much less data are available on the frequency dependence of the complex Poisson’s
ratio. All available data appears to be for polymeric materials and, apart from some early
contradictory findings, shows that the dynamic Poisson’s ratio decreases monotonically
with increasing frequency and the relevant loss factor passes through one maximum
[1, 2, 4].

The measured frequency dependences of the complex moduli and Poisson’s ratios of
polymeric materials are usually interpreted by means of viscoelastic models, particularly
the standard linear solid [6]. Today, it is quite well known that the classical viscoelastic
models can be generalized by means of the fractional calculus to describe weak frequency
dependence, and even ‘‘frequency independence’’ over limited frequency ranges for stiff
structural materials [7–9]. Nevertheless, it is evident that any frequency dependences
calculated by such models reflect only the behaviour of the model and do not represent
valid a priori predictions.

The aim of this paper is to demonstrate that the typical characters of frequency
dependences of all complex moduli and Poisson’s ratios of real solid materials can be
determined without recourse to any material models. It will be shown that the characters
of frequency dependences are the same for any real solid material regardless of the actual
damping mechanism. The results of the theoretical investigation presented here may help
one to understand, predict and model the dynamic behaviour of solid materials, and help
in interpreting experimental data.

2. THEORY

2.1.    

2.1.1. Complex modulus as frequency response function
The linear dynamic elastic and damping properties of any solid material can be

characterized in the frequency domain by a complex number, referred to as the complex
modulus of elasticity. The complex modulus is usually defined for harmonic vibrations,
but a more general definition can be given provided that the Fourier transforms of the
stress– and strain–time histories exist: namely,

M� (jv)=
s̄(jv)
ō(jv)

=Md (v)+ jMl (v)=Md (v)[1+ jh(v)], (1)

where M is the modulus of elasticity in the general sense, a bar over a symbol represents
a complex valued function, j=z−1 is the imaginary unit, v=2pf; f is the frequency
in Hz, s̄ and ō are the Fourier transforms of the stress– and strain–times histories,
respectively (these are the complex amplitudes if the vibration is harmonic). Furthermore,
Md is the dynamic modulus of elasticity, Ml is the loss modulus, and h is the loss factor,

h(v)=
Ml (v)
Md (v)

. (2)

The definition of complex modulus given by equation (1), can also be regarded as general
from another point of view, that no restrictions have been placed on the type of
deformation such as bulk, shear , tensile, etc. Therefore, M� (jv) may represent the complex
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form of any modulus of elasticity of a solid material, whether isotropic or anisotropic
Specifically, the usual complex moduli for isotropic material are

B�( jv)=Bd (v)+ jBl (v)=Bd (v)[1+ jhB (v)], (3)

G�( jv)=Gd (v)+ jGl (v)=Gd (v)[1+ jhG (v)], (4)

E�( jv)=Ed (v)+ jEl (v)=Ed (v)[1+ jhE (v)], (5)

L�( jv)=Ld (v)+ jLl (v)=Ld (v)[1+ jhL (v)], (6)

where, B, G, E and L are the bulk, shear, Young’s and longitudinal moduli, respectively.
The subscripts d and l refer to the dynamic and loss moduli, respectively, and the subscript
of h refers to the relevant modulus of elasticity.

Equation (1) implies that the complex modulus can be interpreted as the frequency
response function of a linear system, the system being the material itself. Therefore, if s̄(jv)
is the excitation, i.e. the input function, then ō(jv) is the output function, the response as
illustrated in Figure 1. Recognition that the material can be regarded as a linear physical
system, and the complex modulus is its frequency response function, provides one with
a very effective tool for understanding the dynamic behaviour of the material. It follows
that the well developed methods of linear system theory [10] can be brought to bear. These
methods will be used throughout the paper.

2.1.2. Causality and dispersion relations
The complex modulus describes the dynamic deformation behaviour of materials in the

frequency domain. Both the real and imaginary parts of the complex modulus, being the
dynamic and loss moduli, respectively, are expected to be frequency dependent. However,
nothing important can be stated about the frequency dependences from simple theoretical
considerations, apart from the plausible statement that the loss modulus is zero at zero
frequency (no motion, no energy loss), so that Ml (v) starts to increase with increasing
frequency. On the contrary, a fundamental feature of real material behaviour in the
time-domain is known, namely it is causal, i.e. no response can occur before initial
application of excitation. It will be shown that, by transforming the causal behaviour of
real solid materials into the frequency domain, the typical characters of the frequency
dependences of the dynamic properties can be determined.

The main consequence of causality is well-known from linear system theory, namely that
the real and imaginary parts of the frequency response function are interrelated [10]. The

Figure 1. Any real solid material for low amplitude excitation can be regarded as a linear physical system
relating the stress to the strain.
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Figure 2. The stress relaxation function is a material response to excitation of strain step function. Causal
and non-causal responses.

relations linking the real and imaginary parts of the frequency response function of a real
physical system are generally referred to as Kramers–Kronig dispersion relations, or
shortly as dispersion relations, after the names of the authors who developed them first
in connection with electromagnetic radiation [11, 12]. However, the relations, which in the
mathematical context are known as Hilbert transforms, are of general nature and,
therefore, have found application in many fields of science such as nuclear physics,
electrical engineering, structural dynamics and acoustics. Since the complex modulus can
be interpreted as the frequency response function of the material, it follows that the
dynamic modulus– and the loss modulus–frequency functions are interrelated too. The
derivation of the dispersion relations for the complex modulus is outlined here including
only the background and some important details.

For deriving the dispersion relations, the material behaviour in the time-domain is
investigated usually as a response to Dirac-impulse or step function excitation. In principle
any of these can be used, but from the physical point of view the step function is a
reasonable choice. Moreover, the strain step function is chosen here because in that case
the stress relaxation is the response which is a common feature of all real solids and quite
well-known from many experiments. The strain step function having a magnitude of oo ,
and the causal real response, the sr (t) relaxation function, are illustrated in Figure 2 along
with a non-causal response. Note that in contrast to Figure 2, the stress response for some
materials may disappear at long times, but such materials are not of interest for our present
purpose. Nevertheless, the theoretical approach presented here may easily be extended to
apply for such materials.
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With knowledge of the relaxation function the complex modulus can be calculated, as
can the reverse. The relationships between sr (t) and M�( jv) are easily determined by taking
the Fourier transforms of the stress response sr (t) and the strain excitation oe (t)= oo1(t):

s̄r (jv)=Fsr (t)=g
a

−a

sr (t) e−jvt dt, (7)

ōe (jv)=Fo01(t)= oo$pd(v)+
1
jv% , (8)

where F denotes the Fourier transform and d is the Dirac delta function. By substituting
these equations into equation (1) one gets:

M�( jv)= jv g
a

−a

mr (t) e−jvt dt, (9)

from which

Md (v)=v g
a

−a

mr (t) sin vt dt+M0, Ml (v)=v g
a

−a

mr (t) cos vt dt, (10, 11)

where mr (t) is the relaxation modulus,

mr (t)=
sr (t)
o0

, (12)

and M0 =M�(0)=Md (0) is the static modulus of elasticity. Furthermore, it can be shown
that

mr (t)=
M0

2
+

1
2p g

a

−a

M�( jv)
jv

ejvt dv. (13)

One of the basic requirement for deriving the dispersion relations is that the relaxation
function be measurable: i.e. a real function which is finite for all times. The mathematical
consequence of this can be seen from equations (10) and (11):

Md (v)=Md (−v) and Ml (v)=−Ml (−v). (14, 15)

The other requirement is the causality. In order to see the consequence of the causality
requirement, the relaxation function is expressed from equation (13) by simple
transformations:

sr (t)=
o0M0

2
+

o0

2p g
a

−a $Md (v)
sin vt

v
+Ml (v)

cos vt
v % dv

−j
o0

2p g
a

−a $Md (v)
cos vt

v
+Ml (v)

sin vt
v % dv. (16)
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Bearing in mind equations (14) and (15), one can see that the first and second intergrands
are even and odd functions of v, respectively; therefore

sr (t)=
o0M0

2
+

o0

p g
a

0

Md (v)
sin vt

v
dv+

o0

p g
a

0

Ml (v)
cos vt

v
dv. (17)

According to the causality principle: sr (t)=0 for tQ 0, and so

−
M0

2
+

1
p g

a

0

Md (v)
sin vt

v
dv=

1
p g

a

0

Ml (v)
cos vt

v
dv. (18)

This equation clearly shows that the dynamic modulus– and the loss modulus–frequency
functions are interrelated.

The dispersion relations are derivable from equation (18). Several forms of the relations
have been developed. Here the forms of dispersion relations involving the static modulus
M0, are given [6, p. 429]:

Md (v)=M0 +
2v2

p
P g

a

0

Ml (y)/y
v2 − y2 dy, Ml (v)=−

2v

p
P g

a

0

Md (y)
v2 − y2 dy. (19, 20)

Here y is an integration variable and P means the principal value of the integrals.
According to the author’s understanding Gross [13] was the first to apply the dispersion
relations for the complex modulus. Since that time the relations have been referred to in
several books about viscoelasticity, but only rarely in experimental practice [14].

The dispersion relations in the general integral form are not usable to investigate the
frequency dependences of dynamic properties. However, beginning with equation (20) and
by following a procedure described by O’Donnell et al. [15], simple approximate equations
may be derived which are usable for our purposes. These approximate equations are local
ones in the sense that they relate the value of loss modulus or loss factor at one frequency
to the slope of the dynamic modulus–frequency curve at that frequency: namely,

Ml (v)1 p

2
v

dMd (v)
dv

, or Ml (v)1 p

4·6
dMd (v)
d[log v]

, (21a, b)

and

h(v)1 p

2
d[log Md (v)]

d[log v]
. (22)

Note that these equations have been known in the theory of viscoelasticity for quite a long
time from the work of Staverman and Schwarzl [16], but no dispersion relations were used
in the original derivation. Note further that the only assumption made in deriving
equations (21) and (22) is that the dynamic properties do not exhibit rapid, resonance-like
frequency dependences [15]. All experiments made on solid materials support this
assumption.

2.1.3. The frequency functions

(a) Qualitative conclusions
Although equations (21) and (22) are approximate ones, the measurements, in particular

those performed on polymers, always support their qualitative validity; moreover, it has
been verified by some investigations too [15, 17]. These facts entitle one to use these
equations in determining the characters of frequency dependences of dynamic properties.
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The first plausible conclusion which can be drawn is that Md (v) is a monotonically
increasing frequency function, because its slope is proportional to Ml (v) which is positive
for all frequencies. The latter follows from the fact that the loss modulus is related to the
dissipated energy which is positive in case of real solids, namely [1, p. 10]:

Ml (v)=
D(v)
pô2 , (23)

where D denotes the energy dissipated during one cycle or harmonic vibration, and ô is
the strain amplitude. It is clear from equations (21a, b) that the larger the slope of increase
of the dynamic modulus–frequency curve, the larger is the dissipated energy, i.e. the
damping. Furthermore, these equations highlight that the frequency dependence of the
dynamic modulus, referred to as dispersion, is the direct consequence of damping; the
dynamic modulus can be independent of frequency in principle only in the case of ideal
elasticity: i.e. no damping.

By bearing in mind the monotonic increase of the dynamic modulus, and equations (21)
and (22), moreover, the causal relaxation response, the typical characters of the frequency
dependences of dynamic properties can be determined. Figure 3 shows the results in a
log–log coordinate system used frequently to present experimental data. The important
parts of the frequency curves are discussed as follows.

At zero frequency the loss modulus and loss factor are zero; the dynamic modulus is
equal to the static modulus M0, and the initial slopes of the log Md–log v functions are
zero. The loss functions start to increase with increasing frequency and, according to
equation (22), the slope of the dynamic modulus–frequency function, and therefore the
value of Md , start to increase too. Note that the initial slope of the dynamic
modulus-frequency function in a lin–lin coordinate system may be different from zero, as
can be seen from equation (21a). In contrast, the high frequency slope of Md (v) must be
zero in any coordinate system. The essential reason for this is that the high frequency limit
of the dynamic modulus, denoted by Ma, must be finite. The latter statement follows from
the facts that the high frequency limit of the complex modulus is equal to the initial (t=0)

Figure 3. The typical characters of frequency dependences of any dynamic modulus, loss modulus and loss
factor of real solid materials plotted in log–log system for the case of one loss maximum.
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value of the mr (t) relaxation modulus [6, p. 109], and mr (0) must be finite in the case of
real solids: i.e. a real relaxation response is required for deriving the dispersion relations
(see section 2.1.2). From the finite high frequency limit and the monotonic increase of
Md (v), it is clear that the high frequency slope of Md (v) cannot be different from zero.
From the latter one can conclude that the loss functions approach zero for infinite
frequencies. Furthermore, it follows from the low and high frequency behaviours of loss
functions that both must pass through at least one maximum as shown in Figure 3, though
in principle many maxima may exist. According to equation (22), the maxima of h(v)
occur at the inflexion points of the log Md–log v function. Furthermore, it follows from
the definition of the loss factor that the maxima of h(v) precede those of Ml (v).

Frequency curves supporting qualitatively the conclusions drawn above are easy to
generate for the case of one loss maximum, by calculating the integrals (10) and (11) with
the assumption of exponential relaxation [18]. Moreover, the frequency dependences of
dynamic properties shown in Figure 3 qualitatively are in good accord with those predicted
by the model theory of viscoelasticity [6, Chap. 3]. Nevertheless, it is important to
emphasize that no models have been used here for determining the frequency dependences,
only the causal and real relaxation responses have been assumed without having to specify
the actual process of relaxation, i.e. the damping mechanism, and no restrictions have been
applied with respect to the type of deformation. Causality and relaxation are the features
of real solid materials in all deformation modes, and consequently it can be stated that
the frequency dependences determined here are valid for all moduli of elasticity of any solid
material regardless of the damping mechanism. This last statement is in accord with that
of O’Donnell et al. [15] that the typical characters of frequency dependences of velocity
and attenuation of longitudinal waves propagating in unbounded solids are independent
of the damping mechanism.

(b) Quantitative conclusions
The discussion presented above concerns only the qualitative characteristics of frequency

dependences of dynamic properties, and no quantitative conclusions have been drawn. The
quantitative characteristics of the frequency curves are: the static modulus M0, the high
frequency dynamic modulus Ma, the slopes of the log Md–log v function at the inflexion
points, and moreover the maxima (Mm , hm ) and the relevant frequencies (vl , vh ) of the loss
functions, the slopes of the increase and decrease of Ml (v) and h(v) below and above their
maximum, respectively, the half-value bandwidth (Dv) of the Ml (v) or h(v) curves (see
Figure 3) and their symmetry or asymmetry. These characteristics are dependent on the
type of material and the type of deformation, and are determined by measurement.
Nevertheless, with knowledge of equations (21) and (22), and from simple theoretical
considerations, some quantitative conclusions can be drawn too for the frequency
dependences of dynamic properties.

The quantitative conclusions, like the qualitative ones, start with the initial increase of
the loss modulus–frequency function. The loss modulus is related to the damping, and the
character of its frequency dependence is determined by the physical micromechanism of
energy loss operative in the material. If one assumes that the damping in a solid can be
attributed to the viscosity, as for fluids, then the loss stress sl related to the dissipated
energy can simply be calculated by Newton’s viscosity law: i.e.

sl (t)= m
do(t)
dt

, (24)
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where m is the viscosity. The transformation of this equation into the frequency domain
results in

s̄l (jv)= mjvō(jv), (25)

from which the loss modulus is

Ml (v)= mv. (26)

Therefore, in the case of pure viscous damping the loss modulus would start to increase
linearly with increasing frequency. Viscous damping is the basic assumption of classical
viscoelasticity; however, it always leads to discrepancy between the theoretical and
experimental frequency curves. The main reason for the discrepancy is that ‘‘pure’’ viscous
stresses evidently do not exist in real solid materials. The reasonable assumption is that
the loss stresses in solids depend to a ‘‘lesser extent’’ on the rate of variation of strain than
in fluids. The ‘‘lesser extent’’ can be expressed mathematically by reducing the order of
the time derivative in equation (24). This leads to the fractional calculus intensively used
recently in modelling the dynamic behaviour of real solid materials [7–9]. Consequently,
instead of equation (24), one can assume that

sl (t)0
da

dta o(t), (27)

where 0Q aQ 1, and the fractional derivation da/dta is defined as [8]

da

dta o(t)=
1

G(1− a)
d
dt g

t

0

o(t)
(t− t)a dt, (28)

where is the gamma function and t is an integration variable. The Fourier transform of
equation (28) results in a simpler form [8],

F
da

dta o(t)= (jv)aō(jv), (29)

where

( jv)a =cos (ap/2)va +j sin (ap/2)va, (30)

from which one can calculate for the loss modulus that

Ml (v)0 sin (ap/2)va. (31)

Consequently, this approach predicts a power function of va for the initial increase of
the loss modulus. Clearly the increase of the loss factor can be described by the same power
function up to those frequencies where Md 1M0. For the sake of completeness it is
mentioned that the application of equation (21a) to the loss modulus given by equation
(31) results in a power function too for the initial increase of dynamic modulus–frequency
function, namely: Md (v)1M0 + ava, where aq 0. Furthermore, if one assumes that the
dynamic modulus approaches its high frequency limit Ma by a function Ma(1− b/vb),
where bq 0 and bq 0, then it follows from equation (21a) that Ml (v) and so h(v)
decrease by a power function of b/vb above their maxima.

It is clear from the foregoing that the variation of loss properties as a function of
frequency can be very weak if the exponents a and b are small. For example if a=0·1,
then according to equation (31), the slope of increase of Ml (v) in a log–log system would
be: a sin (ap/2)=0·0156, which predicts an extremely weak increase with increasing
frequency.
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The other conclusions concern the rate of dispersion: i.e. the frequency dependence of
the dynamic modulus. The approximate equation (22) shows that the slope of the increase
of the dynamic modulus–frequency curve plotted in a log–log system is the largest at about
that frequency where the loss factor has a maximum: namely,

d [log Md (v)]
d [log v] bmax

1 2
p

hm . (32)

The larger the maximum of the loss factor, the larger is the slope of the log Md–log v.
From this and the monotonic increase of Md (v) , it can be concluded that the difference
between M0 and Ma, characterizing the total dispersion of the dynamic modulus, is
proportional to the loss maximum: i.e.

Ma −M0 =DMd 0Mm 0 hm . (33)

The increase of the dynamic modulus in a frequency range, say of v1 to v2, can be
estimated from knowledge of the loss factor by means of equation (22). For this, one takes
the integral of equation (22) between v1 and v2, resulting in

2
p g

v2

v1

h(v) d log v1 log Md (v2)− log Md (v1). (34)

Furthermore, if the frequency dependence of h(v) is assumed to be negligible between v1

and v2, then

log Md (v2)− log Md (v1)1
2
p

h(log v2 − log v1), (35a)

or

Md (v2)
Md (v1)

10v2

v11
2h/p

. (35b)

In this way one can predict that if the loss is low, say h=0·01 and 0·1, then the increase
of the dynamic modulus is no more than 5 and 55%, respectively, in a frequency range
covering three decades. However, if the loss is high, say h=1·0, then Md (v2)/Md (v1)1 80;
i.e. the dynamic modulus increases by about two orders of magnitude in this frequency
range.

By bearing in mind the results of quantitative conclusions, the theoretically possible
frequency dependences of dynamic modulus and loss factor can be drawn as shown in
Figure 4 for the cases of high loss (e.g. hm 1 1·0) and low loss (e.g. hm 1 0·01) with the
assumption of one loss maximum. Moreover, it has been assumed that the low loss is
accompanied by small values of the exponents, say a1 b1 0·1 . . .0·2. For the sake of
clarity and interest the frequency curves are drawn in a lin–lin system instead of a log–log
one.

Further examples for theoretically possible frequency dependences of dynamic
properties predictable by the dispersion theory are shown in Figure 5. The frequency curves
of Figure 5(a) are based on the assumption that there are two loss peaks in close proximity
to each other, and both maxima of the loss factor are relatively high, (e.g. hm 1 1·0)
resulting in strong frequency dependence of the dynamic modulus. In contrast to Figure
5(a), all loss peaks seen in Figure 5(b) are assumed to be low (e.g. hm Q 0·01), and therefore
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Figure 4. Theoretically possible frequency dependences of dynamic modulus and loss factor plotted in lin–lin
coordinate system for the case of one loss maximum. ——, High loss; – – –, low loss.

the dynamic modulus can be regarded as practically frequency independent over a wide
range. Note that the loss peaks are the manifestation of different mechanisms of damping
operative in the solid material.

2.2.  ’ 

The Poisson’s ratio is defined by the ratio of lateral strain to axial strain. It is plausible
that the lateral strain lags behind the axial one due to material damping. Therefore, the
strain to strain ratio, like the stress to strain ratio, can be characterized by a complex
number referred to as the complex Poisson’s ratio. The general definition of the complex
Poisson’s ratio, like the complex modulus, is

n̄( jv)=
oy ( jv)
ox ( jv)

= nd (v)− jnl (v)= nd (v)[1− jhv (v)], (36)

Figure 5. Theoretically possible frequency dependences of dynamic modulus and loss factor plotted in log–log
coordinate system. (a) High loss material with two loss peaks. (b) Low loss material with several loss peaks.
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Figure 6. A material specimen (a) for low amplitude excitation can be regarded as a linear physical system
(b) relating the lateral strain to the axial strain.

where oy (jv) and ox (jv) are the Fourier transforms of the lateral strain– and axial
strain–time functions, respectively, nd is the dynamic Poisson’s ratio, nl is the loss part and
hv is the relevant loss factor:

hv (v)=
nl (v)
nd (v)

. (37)

Note that the minus sign of the imaginary part is the consequence of the lag of lateral
strain, being in the numerator of equation (36), behind the axial strain. In the case of the
complex modulus, the strain being in the denominator of equation (1), lags behind the
stress.

The complex Poisson’s ratio describes the strain to strain ratio in the frequency domain.
The frequency dependences of the dynamic Poisson’s ratio and the relevant loss part
cannot be predicted from simple theoretical considerations. Nevertheless, if one realizes
that the complex Poisson’s ratio can be interpreted as the frequency response function of
a linear system, the system may be a material specimen as shown in Figure 6, then the
whole procedure outlined in the previous section can be applied to determine the characters
of the frequency dependences in question.

Therefore, one can start the procedure again in the time-domain by investigating the
lateral strain response to an axial strain step function excitation having magnitude of ox0

(see Figure 7). It seems to be logical and has been proved by experiments [19] that the time
history of lateral strain obeys a creep function oyc (t) as illustrated in Figure 7. It can be
shown by transforming the causal and real creep response into the frequency domain that
the real and imaginary parts of the complex Poisson’s ratio are linked through the
dispersion relations, namely

nd (v)= n0 −
2v2

p
P g

a

0

n1(y)/y
v2 − y2 dy, nl (v)=

2v

p
P g

a

0

nd (y)
v2 − y2 dy. (38, 39)

Furthermore, it is evident that the relevant forms of the approximate equations (21) and
(22) hold true:

nl (v)1−
p

2
v

dvd (v)
dv

, or nl (v)1−
p

4·6
dvd (v)

d [log v]
(40a, b)
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Figure 7. The lateral strain response obeys creep function to excitation of axial strain step function.

and

hn (v)1−
p

2
d[log nd (v)]

d[log v]
. (41)

It follows from all approximate equations that the slope of nd (v) is negative
(nl q 0, hn q 0), and therefore the dynamic Poisson’s ratio of any real solid material, in
contrast to the dynamic modulus, decreases monotonically with increasing frequency. The
larger the loss, the larger is the rate of decrease of nd (v). Equations (40) and (41) enable
one to determine the typical characters of frequency dependence for nd (v), nl (v) and hn (v),
by following the train of thought of section 2.1.3. The frequency functions thus determined
are shown in Figure 8 for the case of one loss maximum, though in principle many maxima

Figure 8. The typical characters of frequency dependences of dynamic Poisson’s ratio and the relevant loss
functions plotted in lin–log system for case of one loss maximum.



. 96

may exist. Note that the frequency curves are drawn in a lin–log coordinate system instead
of a log–log one because of the small rate of decrease of nd (v) discussed later on. It can
be seen that the characters of the frequency dependences of the loss functions nl (v) and
hn (v), are the same as those of the loss functions of the complex moduli, with the exception
that the maximum of nl (v) precedes that of hv (v).

The quantitative characteristics of the frequency functions nd (v), nl (v) and hn (v) cannot
be predicted, but are known from measurements. The only plausible prediction is that the
rate of decrease of dynamic Poisson’s ratio, likewise the rate of increase of dynamic
modulus, is proportional to the loss maximum: i.e.

n0 − na =Dnd 0 nm 0 hm . (42)

The decreasing character of the dynamic Poisson’s ratio–frequency function and the
existence of one loss maximum, are in accord with a previous theoretical investigation
based on the assumption of exponential creep [18], moreover, these are predictable by
means of the model theory of linear viscoelasticity [6, pp. 528–532]. More than one
maximum for nl (v) and hn (v), however, has never been predicted theoretically.

3. EXPERIMENTAL EVIDENCE

3.1.    

In this section experimental findings will be compared with the theoretical predictions,
and interpreted in the light of dispersion relations. Although the relations concern all solid
materials and any frequency range, here the engineering materials are considered with
special respect to those which are used for or may play a role in sound and vibration
control. Therefore, the material behaviour in the audio frequency range is in focus, but
the variations of dynamic properties in a frequency range as wide as possible are considered
to illustrate all important details.

(a) Rubbers and rubberlike materials
Of the engineering materials known up to now, rubbers and rubberlike materials, the

elastomers exhibit the largest damping in shear and tension-compression deformation. The
maximum of loss factors in question, hG and hE , is usually around 1·0. This high loss
explains the strong frequency dependence experienced for the dynamic shear and Young’s
moduli; their increase extends to two to four orders of magnitude in a frequency range
covering 6 to 10 decades. Dozens of experiments made on rubbers and rubberlike materials
to determine the variations of their dynamic properties for a wide frequency range, are
in good accord with the predictions of the dispersion relations. By way of example the
frequency dependences of shear dynamic properties are given in Figure 9 for a filled natural
rubber having a loss maximum well above the audio frequency range [20]. The loss peaks
of other rubberlike materials developed for vibration damping occur in the audio range
[2, 3]. Figure 9 shows one loss peak; more than one peak is characteristic of polymeric
blends [2]. The slope of the initial increase of the loss modulus–frequency curve is about
0·2. This slope implies that the damping mechanism even in this lossy rubber does not obey
the viscosity law.

The dynamic Young’s modulus and its loss factor of rubbers do not differ appreciably
from the relevant dynamic properties in shear deformation. On the contrary, the dynamic
bulk and longitudinal moduli and the relevant loss factors of the nearly incompressible
rubbers are much larger and smaller than the dynamic shear modulus and shear loss factor,
respectively. The bulk and longitudinal loss factor peaks are of the order of 0·01 [21, 22].
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Figure 9. Frequency dependences of dynamic shear, bulk and longitudinal moduli, and the relevant loss
functions of rubbery materials. ——, Shear dynamic properties of a natural rubber filled with carbon black at
0°C. (Data from Payne and Scott [20].) Bulk ( . . . ) and longitudinal (- - -) dynamic properties of a
styrene-butadiene rubber at 20°C. (Data from Wada et al. [21]. The loss factors hB and hL have been calculated
from the published values of the relevant loss and dynamic moduli.)

The frequency dependences of dynamic bulk and longitudinal moduli and the relevant loss
factors found for a synthetic rubber are given in Figure 9 too by way of illustration [21].
The weak increase of these dynamic moduli with increasing frequency is the consequence
of the low losses in bulk and longitudinal deformation modes. Figure 9 supports the
predictions of the dispersion relations: namely that the higher the loss factor, the larger
is the slope of the increase of dynamic modulus-frequency curve. Moreover, it is clear that
the characters of frequency dependences of dynamic properties are the same in different
deformation modes.

(b) Rigid plastics
It is known that the damping of rigid plastics in shear and tension-compression

deformation is much smaller than that of the rubberlike materials. The maximum of loss
factors hG and hE is, in general, about or smaller than 0·1. The maximum of bulk loss factor
is of the order of 0·01. These low losses predict weak frequency dependence for all dynamic
moduli. Frequency dependences of dynamic shear, Young’s and bulk moduli, and the
relevant loss factors measured for polymethylmethacrylate (Perspex), are shown in Figure
10 by way of example [1, pp. 181, 183, 187]. Similar frequency curves have been found
for other rigid plastics [1]. All of them are in accord with the predictions of the dispersion
relations.

The slopes of the loss factor-frequency curves are even smaller than those of the natural
rubber shown in Figure 9. These small slopes indicate that the damping mechanisms in
the rigid plastics is rather far from the viscous one; however, it is usual to assume the latter
for all kinds of polymeric materials.
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(c) Stiff structural materials
In contrast to the organic polymers much fewer, less detailed experimental data are

available on the dynamic properties of stiff structural materials such as metals, concrete
and wood. The damping in these materials is small; the values of the loss factors hG and
hE are of the order of 0·001 to 0·01 [23]. Furthermore, the loss factors and the dynamic
moduli of elasticity for these structural materials are usually believed to be frequency
independent; however, this belief violates the dispersion relations, i.e. the causality. The
reason for belief of ‘‘frequency independence’’ can be found partly in the nature of these
materials, the frequency range and the accuracy of measurements of their dynamic
properties; and can be well explained by means of the dispersion relations.

With knowledge of the low loss the ‘‘frequency independence’’ measured for dynamic
moduli is not a surprise (see Figure 4). Furthermore, the damping mechanism in most of
these structural materials is certainly far from the viscous one, and therefore the frequency
dependences of their loss factor may be so weak (see Figure 4) that they could be
determined only by very precise, detailed measurements made in a wide frequency range.
In contrast, the belief in frequency independent damping, called solid damping, structural
damping or hysteretic damping, is essentially based on some early measurements made in
such a narrow frequency range (e.g. 2–200 Hz [24]) that the variations of loss factor would
be difficult to determine for these materials, Actually, the frequency dependences of
damping and the existence of damping peaks in metals like those illustrated in Figure 5(b),
have been known for quite a long time [7, 25]. Moreover, subsequent measurements
performed on non-metallic structural materials such as concrete and wood in a wider
frequency range, show the definite, albeit weak variation of their loss factors [26].
Notwithstanding, in order to reveal the frequency dependences of loss factor for these
materials, predicted by the dispersion relations, more refined measurements in a much

Figure 10. Frequency dependences of dynamic shear (––), Young’s (- - -) and bulk (. . .) moduli and the
relevant loss factors of a rigid plastic (polymethylmethacrylate) at 21°C. (Data from Read and Dean [1, pp. 181,
183, 187].)
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Figure 11. Frequency dependences of dynamic Poisson’s ratio and the relevant loss factor of the
styrene-butadiene rubber mentioned in Figure 9, at 20°C. (The frequency curves have been calculated from the
values of dynamic bulk and longitudinal moduli and their loss factors measured by Wada et al. [21].)

wider frequency range should be made. The better understanding of the damping
mechanism operating in the non-metallic structural materials would be the other benefit
of such measurements.

3.2.  ’ 

In contrast to the complex modulus data, only a few published experimental results can
be found with respect to the frequency dependence of the complex Poisson’s ratio, and
the data concerns only polymeric materials. According to the dispersion relations, the
greatest frequency dependences are to be expected for lossy polymers, the elastomers. In
the absence of direct measurements for these materials, the author has calculated the values
of nd and hn for a styrene-butadiene rubber, based on published experimental values of the
dynamic bulk and longitudinal properties, given in Figure 9 [21]. The results supporting
the theoretical statements are shown in Figure 11. It can be seen that the maximum value
of hn (v) for this rubber, at room temperature, occurs in the ultrasonic frequency range,
as is the case for the maximum of loss factors hB (v) and hL (v) as seen in Figure 9, so
the decrease of nd (v) is not great in the audio frequency range. Other measurements [2,
p. 77] performed on a vibration damping elastomer show a decrease of the dynamic
Poisson’s ratio which occurs in the audio frequency range. Unfortunately, no data appears
to have been published on the loss factor hn for this material. Other experiments on a rigid
plastic (polymethylmethacrylate, referred to in section 3.1) support the theoretically
predicted frequency dependences for both nd and hn [1, p. 186]. More than one maximum
of hn (v) has not been observed, but their possible existence can be explained for polymer
blends.

It is worth mentioning that the weak dispersion of the dynamic Poisson’s ratio shown
in Figure 11 is related to the low values of hn , the maximum of which (00·025) is much
smaller than the shear loss factor of rubber (see Figure 9). It is probable that hn is even
lower for stiff structural materials, so that their dynamic Poisson’s ratios, like the dynamic
moduli, can be regarded as practically frequency independent. Nevertheless, the latter has
never been investigated experimentally.
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4. USEFULNESS OF DISPERSION RELATIONS

The great advantage of the dispersion relations is in their generality, and thus they can
help one to understand dynamic behaviour of solid material of any kind, in different
deformation modes. Moreover, the relations enable one to predict material behaviour and
interpret experimental data. Therefore, the consequences of this theory can be useful in
both materials engineering, measurements of dynamic properties and in modelling
dynamic bevaviour.

(a) Materials engineering
Modern damping technology requires materials with loss factors as high as possible.

With knowledge of the dispersion relations the realizable value of the loss factor can be
estimated, the principal way of increasing the loss factor can be found, and the bounds
of the increase can be clarified.

The dispersion relations state that the loss factor in a frequency range is proportional
to the rate of modulus increase in that range. This statement is formulated by equation
(35b), which offers a rough estimation of the hm maximum of loss factor. Namely, if one
assumes that the frequency range of v1 to v2 is needed approximately for the dynamic
modulus to increase from about M0 up to Ma, then

hm 1 p

2
log [Md (v2)/Md (v1)]

log (v2/v1)
1 p

2
log (Ma/M0)
log (v2/v1)

. (43)

By means of equation (43) one can explain the reason why the loss factors, hG and hE ,
for the effective elastomeric damping materials have a maximum of around 1·0, and why
no loss factors larger than 2·0 to 3·0 have been realized [2, 3].

It is known that the high frequency limit of the dynamic shear (and Young’s) modulus,
known as the glassy modulus, is about the same (0109 Pa) for all elastomers. The low
frequency modulus, the static modulus, is dependent very much on the type of material,
the filler content, etc., and it may be as low as 105 Pa. The width of the frequency range
needed for the total increase of dynamic modulus is at least six decades (see Figure 9).
With these data equation (43) gives hm 1 1, which seems to explain the experimental
findings. In principle there are no bounds to increasing the loss factor maximum; it could
be done by either increasing the glassy modulus, or decreasing the static modulus.
However, the glassy modulus of elastomeric materials, known up to now, has an upper
theoretical bound determined by the molecular structure. The decrease of the static
modulus has not only theoretical, but practical bounds too, because a certain stiffness is
required for engineering applications.

Similarly, the dynamic behaviour of composite materials can be explained and the
principal way of improving their damping properties can be shown. Plunkett [27] has raised
the following question: what is the reason that, in spite of a lot of efforts, the damping
properties of polymer matrix composites, in the linear range, have not been significantly
improved? Is there any physical limitation of it? The answer is definitely: yes, the limitation
follows from the dispersion relations.

It is known that the damping properties of composites are essentially dependent on the
matrix material, which is a rigid plastic [28]. The maximum of the loss factor, e.g. hE , of
rigid plastics is usually smaller than 0·1, resulting in weak dispersion of the dynamic
Young’s modulus (see Figure 10). As a result of the fibres, particles added into the polymer
matrix, the ‘‘stiffness’’ of the material, i.e. the static modulus of elasticity, increases. It is
evident that the high frequency dynamic modulus increases too, but there is no physical
reason that this increase should differ considerably from the increase of the static modulus.
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Consequently, the dispersion of the dynamic modulus, and therefore the maximum of the
loss factor, do not differ appreciably from those of the polymer matrix. The key to
improving the damping properties of composites is, therefore, in the considerable increase
of dispersion of the dynamic modulus. Moreover, the increase of the high frequency
modulus is the feasible way to increase the dispersion, because the static modulus must
not be reduced to keep the stiffness properties required, as illustrated in Figure 12. If one
could find how to increase considerably the high frequency modulus—by finding either a
new matrix material or creating a new composite structure, then that composite material
could be lossy as well as have high stiffness.

(b) Dynamic properties measurements
The dynamic properties are determined by measurement. The knowledge of

consequences of dispersion relations gives a powerful tool in planning the measurement,
and moreover in interpreting and evaluating the measured data. With knowledge of the
approximate value of the loss factor (it can easily be determined by a simple preliminary
measurement of resonance type), one can decide on what detailed measurements are
necessary to perform for determining the frequency dependences of dynamic properties.
For example if the loss factor is low, say hQ 0·1, then it is evidently useless to search for
the frequency dependences of the dynamic modulus even in a wider frequency range;
however, it is frequently done. Furthermore, the consequences of the dispersion relations
may help one to interpret the measurement results in a case of their large scatter when
the frequency dependences could hardly be established. Finally, if one seeks the
mathematical form of the measured frequency dependences for use in the vibration
calculus without causality problem, then the dispersion relation, the general integral form,
has to be taken into account in fitting the frequency curves to experimental data. Good
examples for this are given in the work of Kennedy and Tomlinson [14].

(c) Modelling dynamic behaviour
A lot of efforts have been and are being made in viscoelasticity, acoustics, structural

dynamics, etc., to find models describing the dynamic behaviour of solid materials. The

Figure 12. The key of increasing the damping of composites is to have considerable dispersion of the dynamic
modulus. In order to increase the dispersion, the high frequency modulus should be increased without decreasing
the static modulus to keep the stiffness properties required. ——, Low loss composite; – – –, high loss composite.
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models are evaluated by different methods, e.g. by using the principles of thermodynamics
or by comparing the model behaviour with experimental data either in the frequency- or
the time-domain. The dispersion relations offer an exact method for this evaluation; a
model aiming to describe dynamic behaviour of real solids, should satisfy the dispersion
relations.

In this way one can easily find the reason for the non-causal behaviour of the hysteretic
damping model, which has led to a long-standing discussion from 1970, especially in this
journal. In the hysteretic model one assumes that the loss factor, and implicitly the
dynamic modulus, are independent of frequency [2]. In contrast, according to the
dispersion relations, the loss factor and the dynamic modulus of a real, and therefore
causal solid material cannot be constant together in even a narrow frequency range!
The same applies to the loss factor and dynamic stiffness of passive mechanical structures
too.

5. CONCLUSIONS

This paper has dealt with the frequency dependence of the complex moduli of elasticity
and the complex Poisson’s ratios of real solid materials. It has been shown that the typical
characters of the frequency dependence of both the complex moduli and the complex
Poisson’s ratios can be determined by transforming the causal and real relaxation and
creep responses, respectively, from the time-domain into the frequency-domain, without
having to specify the precise processes governing relaxation and creep. The transformation
results in the dispersion relations which link the dynamic elastic and damping properties.
The simplified, approximate, local forms of the dispersion relations, together with some
simple theoretical considerations were used to determine the frequency dependences. The
advantage of the method described in this paper is that no restrictions need be applied
with respect to either the type of deformation (shear, extension, etc.) or the type of
material, so that the conclusions are of general nature. The main conclusions are
summarized as follows.

(a) All the dynamic moduli (shear, Young’s etc.) of real solid materials increase
monotonically with increasing frequency, and the high frequency limit is finite.

(b) The dynamic Poisson’s ratios of real solid materials decrease monotonically with
increasing frequency.

(c) All loss functions pass through at least one maximum with respect to frequency,
though in principle many loss maxima may exist.

(d) The larger the loss maximum, the larger the rate of increase of dynamic modulus
and the rate of decrease of dynamic Poisson’s ratio, respectively.

(e) These characters of the frequency dependences are physically inevitable regardless
of the damping mechanism operating in solid materials.

The frequency dependence of the dynamic properties is strongest for organic polymers
with high loss factors (rubbers and other elastomers). In contrast, the rate of variation of
the dynamic moduli and loss factors is much lower for most structural materials having
low loss, and can be neglected over fairly wide frequency ranges for many practical
applications. The consequences of the dispersion relations can effectively be used in
materials engineering to predict dynamic behaviour and the realizable loss factor of
vibration damping materials and composites. Furthermore, the dispersion relations may
be useful in interpreting and evaluating the results of measurements of dynamic properties,
and in modelling the dynamic behaviour of materials.
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